Fixpoint Logics on Hierarchical Structures

نویسندگان

  • Stefan Göller
  • Markus Lohrey
چکیده

Hierarchical graph definitions allow a modular description of graphs using modules for the specification of repeated substructures. Beside this modularity, hierarchical graph definitions allow to specify graphs of exponential size using polynomial size descriptions. In many cases, this succinctness increases the computational complexity of decision problems. In this paper, the modelchecking problem for the modal μ-calculus and (monadic) least fixpoint logic on hierarchically defined graphs is investigated. In order to analyze the modal μ-calculus, parity games on hierarchically defined graphs are studied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Games for Topological Fixpoint Logic

Topological fixpoint logics are a family of logics that admits topological models and where the fixpoint operators are defined with respect to the topological interpretations. Here we consider a topological fixpoint logic for relational structures based on Stone spaces, where the fixpoint operators are interpreted via clopen sets. We develop a game-theoretic semantics for this logic. First we i...

متن کامل

Fixpoint Extensions of Temporal Description Logics

In this paper we introduce a decidable fixpoint extension of temporal Description Logics. We exploit the decidability results obtained for various monodic extensions of Description Logics to obtain decidability and tight complexity results for temporal fixpoint extensions of these Description Logics and more generally for the decidable monodic fragments of first order logic.

متن کامل

Characterizing Definability in Decidable Fixpoint Logics

We look at characterizing which formulas are expressible in rich decidable logics such as guarded fixpoint logic, unary negation fixpoint logic, and guarded negation fixpoint logic. We consider semantic characterizations of definability, as well as effective characterizations. Our algorithms revolve around a finer analysis of the tree-model property and a refinement of the method of moving back...

متن کامل

Flat modal fixpoint logics with the converse modality

We prove a generic completeness result for a class of modal fixpoint logics corresponding to flat fragments of the two-way mu-calculus, extending earlier work by Santocanale and Venema. We observe that Santocanale and Venema’s proof that least fixpoints in the Lindenbaum-Tarski algebra of certain flat fixpoint logics are constructive, using finitary adjoints, no longer works when the converse m...

متن کامل

Modal Fixpoint Logics

Context. Modal fixpoint logics constitute a research field of considerable interest, not only because of its many applications in computer science, but also because of its rich mathematical theory, which features deep connections with fields as diverse as lattice theory, automata theory, and universal coalgebra. In the 1970s computer scientists started to use modal logics as specification langu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005